MRI thermometry in phantoms by use of the proton resonance frequency shift method: application to interstitial laser thermotherapy.

نویسندگان

  • J Olsrud
  • R Wirestam
  • S Brockstedt
  • A M Nilsson
  • K G Tranberg
  • F Ståhlberg
  • B R Persson
چکیده

In this work the temperature dependence of the proton resonance frequency was assessed in agarose gel with a high melting temperature (95 degrees C) and in porcine liver in vitro at temperatures relevant to thermotherapy (25-80 degrees C). Furthermore, an optically tissue-like agarose gel phantom was developed and evaluated for use in MRI. The phantom was used to visualize temperature distributions from a diffusing laser fibre by means of the proton resonance frequency shift method. An approximately linear relationship (0.0085 ppm degrees C(-1)) between proton resonance frequency shift and temperature change was found for agarose gel, whereas deviations from a linear relationship were observed for porcine liver. The optically tissue-like agarose gel allowed reliable MRI temperature monitoring, and the MR relaxation times (T1 and T2) and the optical properties were found to be independently alterable. Temperature distributions around a diffusing laser fibre, during irradiation and subsequent cooling, were assessed with high spatial resolution (voxel size = 4.3 mm3) and with random uncertainties ranging from 0.3 degrees C to 1.4 degrees C (1 SD) with a 40 s scan time.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Referenceless PRF shift thermometry.

The proton resonance frequency (PRF) shift provides a means of measuring temperature changes during minimally invasive thermotherapy. However, conventional PRF thermometry relies on the subtraction of baseline images, which makes it sensitive to tissue motion and frequency drift during the course of treatment. In this study, a new method is presented that eliminates these problems by estimating...

متن کامل

SSFP-based MR thermometry.

Of the various techniques employed to quantify temperature changes by MR, proton resonance frequency (PRF) shift-based phase-difference imaging (PDI) is the most accurate and widely used. However, PDI is associated with various artifacts. Motivated by these limitations, we developed a new method to monitor temperature changes by MRI using the balanced steady-state free precession (balanced-SSFP...

متن کامل

MRI thermometry based on encapsulated hyperpolarized xenon.

A new approach to MRI thermometry using encapsulated hyperpolarized xenon is demonstrated. The method is based on the temperature dependent chemical shift of hyperpolarized xenon in a cryptophane-A cage. This shift is linear with a slope of 0.29 ppm °C(-1) which is perceptibly higher than the shift of the proton resonance frequency of water (ca. 0.01 ppm °C(-1)) that is currently used for MRI t...

متن کامل

Magnetic resonance thermal imaging combined with SMASH navigators in the presence of motion

This study develops and tests an MR thermometry method combined with SMASH navigators in phantom experiments mimicking human liver motion with the purpose of detecting and correcting motion artifacts in thermal MR images. Experimental data were acquired on a 3T MRI scanner. Motion artifacts of mobile phantoms mimicking human liver motion were detected and corrected using the SMASH navigators an...

متن کامل

MR temperature imaging using PRF phase difference and a geometric model-based fat suppression method.

BACKGROUND Because protons in fat do not exhibit a temperature-dependent frequency shift, proton resonance frequency shift (PRFS)-based MR thermometry always suffers from disturbances due to the presence of fats or lipids. OBJECTIVE A new fat suppression method for PRFS-based MR thermometry is proposed to obtain accurate variation of phase angle. METHODS Similar to the approach of separatin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physics in medicine and biology

دوره 43 9  شماره 

صفحات  -

تاریخ انتشار 1998